
UT699-AN-07

UT699 L1 Data and Instruction
Cache Organization

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

APPLICATION NOTE
RELEASED

 9 /9/ 10

Table 1: Cross Reference of Applicable Products

Product Name: Manufacturer Part Number SMD # Device Type Internal PIC Number:
UT699 32-bit Fault-Tolerant
SPARC V8/LEON 3FT Processor

UT699 5962-08228 01, 02 WG07

* PIC = Product Identification Code

1.0 Introduction

Cache memory is an important element in microprocessors. In the UT699, each instruction and data access from
external memory can take up to three clock cycles during random accesses and two clock cycles during burst
instruction fetches. Accesses to cache memory in a processor such as the UT699 take only a single clock cycle.
Microprocessor designers usually place cache memory on the same die as the central processing unit in order to
achieve this fast access time.

During code execution, the processor fetches instructions and data from external memory and stores it into on-chip
cache memory. Subsequent accesses to cached instructions or data will then take only a single CPU clock cycle per
access. This results in higher system performance as a processor utilizing cache requires fewer clock cycles to
execute code as the same processor without cache.

This application note explains the cache organization of the UT699, how the UT699 determines cache addresses,
and the use of cache tags. Finally, Section 6 provides assembly code examples that the software programmer can
utilize to access cache data and tags.

2.0 Cache Organization

The UT699 Leon 3FT microprocessor has 8kB of L1 instruction cache and 8kB of L1 data cache. Both cache units are
organized as two-way, set associative, resulting in a logical configuration of 2x4kB for both instruction cache and
data cache. The instruction cache is organized as 128 lines with 32 bytes per line for each set. The data cache is
organized as 256 lines with 16 bytes per line for each set. In the event of a cache miss, i.e., a cache location does
not contain valid data, the cache controller replaces an entire cache line using a least-recently used (LRU)
replacement policy. The instruction and data cache are organized as shown in Tables 2 and 3.

Table 2: Instruction Cache Organization

Set Line Byte
0 0 31 30 ... 4 3 2 1 0
0 ... 31 30 ... 4 3 2 1 0
0 127 31 30 ... 4 3 2 1 0
1 0 31 30 ... 4 3 2 1 0
1 ... 31 30 ... 4 3 2 1 0
1 127 31 30 ... 4 3 2 1 0

UT699-AN-07

UT699 L1 Data and Instruction
Cache Organization

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

APPLICATION NOTE
RELEASED

 9 /9/ 10

Table 3: Data Cache Organization

Set Line Byte
0 0 15 ... 1 0
0 ... 15 ... 1 0
0 255 15 ... 1 0
1 0 15 ... 1 0
1 ... 15 ... 1 0
1 255 15 ... 1 0

3.0 Cache Addresses

A unique address identifies each cache location. Accesses to either cache data or cache tags make use of these
addresses. Section 5 explains the use of cache tags and their relationship to external addresses. Instruction and
data cache addresses are word aligned. Instruction cache addresses range from 000016 to 0FFC16 for set 0, and
from 100016 to 1FFC16 for set 1. Data cache addresses range from 000016 to 0FFC16 for set 0, and from 100016 to
1FFC16 for set 1. Since cache addresses are always aligned on 32-bit word boundaries, they must end in 0016, 0416,
0816, or 0C16.

Table 4 shows an example of the addresses for the words in line 2 of set 1 of the instruction cache. For example,
instruction cache address 104016 is the address of word 0 of line 2 of set 1 of the instruction cache.

Table 4: Logical Representation of Instruction Cache Address

Cache Address Set Line Word “00”1

104016 x x x 1 0 0 0 0 0 1 0 0 0 0 0 0
104416 x x x 1 0 0 0 0 0 1 0 0 0 1 0 0

... x x x 1 0 0 0 0 0 1 0 ... 0 0
105C16 x x x 1 0 0 0 0 0 1 0 1 1 1 0 0

Table 5 shows an example of the addresses for the words in line 2 of set 1 of the data cache.

Table 5: Logical Representation of Data Cache Address

Cache Address Set Line Word “00”1

102016 x x x 1 0 0 0 0 0 0 1 0 0 0 0 0
102416 x x x 1 0 0 0 0 0 0 1 0 0 1 0 0
102816 x x x 1 0 0 0 0 0 0 1 0 1 0 0 0
102C16 x x x 1 0 0 0 0 0 0 1 0 1 1 0 0

Notes:

1) The two least-significant bits for both instruction and data cache addresses are always “00”, indicating word alignment.

UT699-AN-07

UT699 L1 Data and Instruction
Cache Organization

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

APPLICATION NOTE
RELEASED

 9 /9/ 10

4.0 Data Caching
The following section provides an example of how external data is stored in cache memory, demonstrates the case
where two external addresses are mapped to the same cache location, and explains how cache sets are used.

Each set of the data cache contains 4096 bytes, or 1024 words, of cache memory that map to the entire 1GB
external address space. Therefore, each individual cache location maps to 256k locations in external memory.
Conversely, there are 256k locations of external address locations that map to a single location in cache memory.
Now consider the case where two variables are written to external data, the first to address 4000200016 and the
second to address 4000300016. Both variables are aligned on a 4kB boundary, which is the size of each data cache
set. Therefore, they necessarily map to the same cache location. Specifically, they both map to the data cache at
address 000016. This is shown in Figure 1 below.

Figure 1. Example of External Data being written to Cache

In this example, the first write to external address 4000200016 results in a write to cache location 000016, which is the
first word of the first row of set 0. The valid bit for this cache location will be set, indicating that the cache location
contains valid data. Valid bits are discussed further in Section 5. Next, data is written to external address 4000300016.
If the valid bit for cache location 000016 were not set, this would result in a write to that cache location. However,
since the valid bit is set, the write occurs to cache address 100016, which is the first word of the first row of set 1.

The cache controller uses a least-recently used (LRU) replacement policy. This means that a subsequent update to
external memory on the same 4kB boundary results in a write to cache location 000016, assuming location 100016 was
the most recently accessed location. The cache data will be overwritten with the new data.

UT699-AN-07

UT699 L1 Data and Instruction
Cache Organization

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

APPLICATION NOTE
RELEASED

 9 /9/ 10

5.0 Cache Tags and Data
Each cache memory location has an associated cache data and a cache tag. The cache tag of a particular cache
location contains information that identifies the address of the associated data in external memory. The cache data
of a particular cache location contains the data corresponding to the data in external memory. Refer to the tag layouts
in Figures 2 and 4. These figures show the fields of the instruction and data cache tags. The actual physical layout of
the cache tags is explained in Section 2.6.3 of the UT699 Functional Manual. The ITAG and DTAG fields contain the
most-significant 20 bits of the address of the data in external memory. The least-significant 12 address bits directly
correspond to the cache address and are used to access cache tags and data using the load and store instructions
lda and sta. The IVAL and DVAL fields identify whether or not the corresponding word in a cache line is valid. A ‘1’
indicates that the word is valid, and accesses to the data or instruction at that address result in a valid cache hit.
Note: The valid bits are shared with all cache tags for a given cache line. For more information on the instruction and
data tag layouts, please refer to the UT699 Functional Manual.

The cache data fields are represented in Figures 3 and 5. These are 32-bit fields that contain the same data as the
referenced address in external memory when the cache is valid, i.e., the valid bit is set for that cache location.

Figure 2. Instruction Cache Tag Layout

Figure 3. Instruction Cache Data Layout

Figure 4. Data Cache Tag Layout

Figure 5. Data Cache Data Layout

Consider the previous example in Figure 1 of a write to external memory at address 4000200016. It is assumed that
prior to the write, the entire cache line does not contain valid data, i.e., the DVAL field is 00002. Following the write
to external memory, the data cache tag contains the following information (in hexadecimal):

UT699-AN-07

UT699 L1 Data and Instruction
Cache Organization

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

APPLICATION NOTE
RELEASED

 9 /9/ 10

To reconstruct the external address from the cache tag, the DTAG or ITAG field is concatenated with the cache
address. In this example, the DTAG field is 4000216 and the cache address is 000016. Therefore, the referenced
external address is:

40002xxx16 + 000016 = 4000200016.
Following this write, the data cache at location 000016 contains the same data as external address 4000200016.

6.0 Accessing Cache Memory Using Alternate Space Identifier (ASI) Instructions
Accesses to the cache tags and cache data are handled automatically by the LEON 3FT core. However, they can be
accessed using lda and sta instructions. These commands are similar to the load and store instructions ld and st,
except that they access memory in an alternate memory space using an alternate space identifier (ASI). The following
table shows the ASI usage for the UT699 microprocessor.

Table 6: ASI Usage

ASI Usage
0116 Forced cache miss
0216 System (cache control) registers

0816, 0916, 0A16, 0B16 Normal instruction and data access
0C16 Instruction cache tags
0D16 Instruction cache data
0E16 Data cache tags
0F16 Data cache data
1016 Flush entire instruction cache
1116 Flush entire data cache

For example, to access the data cache tag and cache data at a particular cache location, the programmer must use
ASI 0E16 and 0F16 with an lda and sta instruction using inline assembly code. The most efficient way to access
memory in the standard or an alternate memory space is to create inline assembly procedures called as C routines.

UT699-AN-07

UT699 L1 Data and Instruction
Cache Organization

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

APPLICATION NOTE
RELEASED

 9 /9/ 10

The following four functions show examples of inline assembly code. The first two show how to perform a store and
load operation in standard memory space.

inline void storemem(int addr, int val)
{
 asm volatile (" st %0, [%1] " // store val to addr
 : // output
 : "r" (val), "r" (addr) // inputs
);
}

inline int loadmem(int addr)
{
 int tmp; // used for returned value
 asm volatile (" ld [%1], %0 " // load tmp from addr
 : "=r" (tmp) // output
 : "r" (addr) // input
);
 return tmp;
}

The next two functions are used to read the values of the data cache tags and data cache data in alternate spaces
0E16 and 0F16, respectively.

inline int loadmem_asi_0e(int addr)
{
 int tmp; // used for returned value
 asm volatile (" lda [%1] 0x0e, %0 " // load tmp from addr at ASI 0x0e
 : "=r" (tmp) // output
 : "r" (addr) // input
);
 return tmp;
}

inline int loadmem_asi_0f(int addr)
{
 int tmp; // used for returned value
 asm volatile (" lda [%1] 0x0f, %0 " // load tmp from addr at ASI 0x0f
 : "=r" (tmp) // output
 : "r" (addr) // input
);
 return tmp;
}

We can now make use of our inline assembly routines using a C function call. An example is the following write to
data memory at locations 4000200016 and 4000300016 in standard memory space using the following C code:

storemem(0x40002000, 0x55555555);

UT699-AN-07

UT699 L1 Data and Instruction
Cache Organization

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

APPLICATION NOTE
RELEASED

 9 /9/ 10

storemem(0x40003000, 0xaaaaaaaa);

In the event of a flushed data cache line or a cleared valid bit at cache location 000016, both physical memory
locations would map to data cache address 000016, i.e., word 0 of line 0 of set 0. However, this example shows that
the first store operation results in the writing of data 5555555516 to set 0, with the second store operation writing
data to set 1. The C functions and resultant returned values are shown below:

dcache_data = loadmem_asi_0f(0x0000);
dcache_tag = loadmem_asi_0e(0x0000);

The instruction passes the 12-bit cache address as a function parameter. The first function returns the cache data
5555555516. The second function returns the data cache tag 4000200116. The five most-significant hex digits of the
tag indicate the upper 20 address bits of the data stored in physical memory space. The least-significant hex digit
corresponds to the valid bits for the cache line. In this example, the value of ‘1’ in the least-significant digit indicates
that word 0 is now valid as a result of the first storemem operation.

The first storemem operation resulted in an update of the data cache memory at location 000016. Therefore, any
access to data in physical memory at an address with the same three least-significant hex digits results in either a
replacement at cache location 000016, or the data being written to set 1 at address 100016. Since only cache location
000016 has been updated, the data will be written to set 1. To illustrate this, the data cache data and data cache tag
at cache location 100016 are accessed using the following instructions:

dcache_data = loadmem_asi_0f(0x1000);
dcache_tag = loadmem_asi_0e(0x1000);

These instructions return values of AAAAAAAA16 and 4000300116 for the data cache data and tag, respectively,
showing that the data was stored in set 1. As before, the ‘1’ in the least-significant digit of the data cache tag
indicates that the first word in the cache line is valid.

Note: Diagnostic accesses to instruction cache (ASI 0C16 and 0D16) fail unless the instruction cache is disabled in the cache control
register.

7.0 Conclusion
Updates and accesses to data and instruction cache during the execution of application code are automatically handled
by the LEON 3FT processor core logic. However, the contents of the cache tags and data are readily available with
memory accesses using alternate space identifier (ASI) instructions. This can be particularly useful during code debug
when confirmation of cache accesses is required or to compare performance in a system where cache could be either
enabled or disabled.

UT699-AN-07

UT699 L1 Data and Instruction
Cache Organization

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

APPLICATION NOTE
RELEASED

 9 /9/ 10

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are
exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export
Administration Regulations. Diversion contrary to U.S. law is prohibited.

